FX初心者向け

分析方法や分析ツールについて解説

分析方法や分析ツールについて解説
KGIは、抽象的な目標ではなく、具体的な数値での設定が大切です。
たとえば、ECサイトでの売上増加に対するKGIを設定する場合、単なる「売上アップ」ではなく、「半年以内に単月の売上2,000万円を達成」など具体的に設定します。

分析方法や分析ツールについて解説

データ分析基盤は、多種多様なデータを統合した上で分析・活用するためのソリューションです。Excel や CSVファイルを数個利用してデータを分析するだけであれば、大がかりなデータ分析基盤を用意する必要はないでしょう。

しかし、「大量のデータを分析したい」「複数の担当者で分担して分析したい」といった場合には、効率よく分析を行うためにデータ分析基盤の構築が必要となります。
代表的なのは 分析方法や分析ツールについて解説 AI を利用する際です。定期的かつ繰り返し分析を行う必要があるので、データ分析基盤があるとスピーディーに手間をかけず結果を出すことができるようになります。

1.データを貯める(データレイク)

2.貯めたデータを分析するために整形・加工・クレンジングする
(データウェアハウス)

データレイクや個別のデータソースに存在しているデータを ETL(Extract/Transform/Load)ツールで抽出し、分析用途に合わせて加工した上でデータウェアハウスに格納します。
幅広いデータソースから収集した多種多様なデータを用いて分析を行うという場合には、あらかじめ加工済みのデータをデータウェアハウスに集めておいた方が分析をスムーズに進めることができます。

3.分析ツールを実行するためにデータを保管する(データマート)

データマート (Data Mart)は、特定の用途で必要となる加工済みのデータのみを保管する役割を担います。

データ分析基盤選定で押さえるべき5つのポイント

1. 属人化を防止できること

2. 一気通貫でデータ分析基盤を利用できること

3. スピーディーに分析を開始できること

4. 非構造化データを扱えること

従来、企業が扱うデータの多くはリレーショナルデータベースや CSVデータのように、列と行の概念を持った構造化データでした。
一方で、最近では電子メール、会議を録音した音声ファイル、PDF形式の契約書といった列と行の概念を持たない非構造化データが多くなっています。

5. 拡張性が高いこと

スマートデバイスや IoT の普及によってデータ流通量が急増。2022年の世界のデータ流通量は、2017年時点と比べて3倍以上に達すると予測されています(※1)。

IBM Cloud Pak for Dataについて

IBM Cloud 分析方法や分析ツールについて解説 Pak for Data は、企業のデータ活用を強力に推進するデータ分析基盤です。Red Hat OpenShift Container Platform 上で稼働し、クラウド・自社データセンターなど環境を選ばずに利用することができます。

また、IBM Cloud Pak for Data はコンテナ化されているため、自社のデータ環境に合わせてリソース・可用性を柔軟に調整することができます。まさに企業で利用するためのデータ分析基盤として最適な製品です。

こちらのホワイトペーパーでは、今回ご紹介したデータ分析基盤選定のポイントと合わせて IBM Cloud Pak for Data が選ばれる理由を解説しています。データ分析基盤の導入をご検討中の方は、ぜひ、ご一読ください。

データ分析をビジネスやマーケティングで活用するには?


データ分析を定着させるための考え方として、「三角ロジック」を用いるとよいでしょう。三角ロジックとは、「主張」と「データ」、「理由づけ」による論理を正三角形の頂点に位置させて表したものです。論理的な主張をするためには、客観的なデータと、そのデータを主張に結びつける理由づけ、すなわち根拠が必要となります。主張に対して「なぜそう主張するのか?」という質問への回答が、データと理由づけ(これらが合わせて根拠となります)で示されます。逆に、根拠があって、「だから何が言えるのか?」という質問への回答が主張になるわけです。まずはこうした思考のロジックを実践してみるとよいでしょう。組織にデータ分析を定着させるためには、こうしたロジカルシンキングが当たり前になる組織文化、組織風土作りが重要です。
データ分析自体は決してそこまで複雑なものではなく、あくまで根拠を作り出すための手段に過ぎません。まずは以下のステップを踏みながら自社やご自身でも試してみてください。

分析の目的を明確化する

分析の計画を立てる

データ収集・可視化

データを加工する

分析・施策の実行

ここでデータの分析に入ります。データアナリストやデータサイエンティストといったデータ分析の専門家が作業を行います。データアナリストはデータ分析を専門に扱うプロフェッショナルであり、データサイエンティストはデータアナリストの業務に加えて、経営的な視点から提言を行うまでを業務の範疇としています。自社にとってどちらの人材が適切かを判断し、確保しましょう。
データを分析できたら、「なぜそう主張するのか?」「だから何が言えるのか?」を明らかにするための議論を行い、目的に応じた施策を策定し、実行します。
ここではバイアス(認知の歪み)が発生しやすく、分析結果を都合よく(あるいは都合が悪いように)解釈してしまいがちです。分析するにあたってバイアスを取り除かなければ判断を誤ってしまうため、ここでも社内の関係者のみで進めるのではなく、外部に協力を仰ぐことを推奨します。

関連記事

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメント

コメントする

目次
閉じる